Home > Equations > Simultaneous Equations: Substitution Method

Simultaneous Equations: Substitution Method

This is exactly the same method we use to find where two lines intersect.

Process:

  1. Rearrange one of the equations to make one of the variables a subject
  2. Substitute for this variable into the other equation
  3. Solve the resulting equation
  4. Substitute these solutions into one of the original equations to find the values of the other variable

Example

Solve the system of equations

y=4x-3\rightarrow 1

3y+x=7\rightarrow 2

Substitute eqn 1 into eqn 2

\implies 3(4x-3)+x=7

\displaystyle \implies 12x-9+x=7\implies 13x=16\implies \frac{16}{13}

Substituting into eqn 1 gives

\displaystyle y=4\left(\frac{16}{13}\right)-3=\frac{25}{13}


Solve the system of equations

y-3=x^2+4x\rightarrow 1

2x=y-6\rightarrow 2

Rearrange eqn 2 to make y the subject

\implies y=2x+6\rightarrow 3

Substitute eqn 3 into eqn 1

\implies (2x+6)-3=x^2+4x\implies x^2+2x-3=0

Factorising gives

(x+3)(x-1)=0\implies x=-3\mbox{ or }x=1

Substituting these values into eqn 3 gives

y=0\mbox{ and }y=8

So the solutions are (-3,0)\mbox{ and }(1,8)


Solve the system of equations

3x+2y=13\rightarrow 1

2x-y=-3\rightarrow 2

Rearranging eqn 2 to make y the subject gives

y = 2x+3\rightarrow 3

Substituting eqn 3 into eqn 1 gives

3x+2(2x+3)=13\implies 7x+6=13\implies x=1

Substituting the value of x into eqn 3 gives

y=5

Advertisements
Categories: Equations
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: